LMU
MPQ
Quantum Optics Group (LMU) - Quantum Many Body Systems Division (MPQ)

Check out our article for the general reader in 'Spektrum der Wissenschaft' (the german issue of Scientific American) in the SdW, Nov. 2014 issue on 'Simulated Quantum Worlds'.

We studied far-from equilibrium spin transport in Heisenberg quantum magnets. For 1D systems we explain the observed diffusion like transport microscopically by the spectral properties of the Hamiltonian. In contrast, 2D Heisenberg magnets show anomalous superdiffusion. 

Phys. Rev. Lett. 113, 147205 (2014)

Using the two stable electronic states of ytterbium, we were able to observe an orbital spin-exchange interaction - the building block of orbital quantum magnetism - in a SU(N)-symmetric fermionic quantum gas. Spin-exchanging interactions and SU(N) spin symmetry in ytterbium were so far only predicted theoretically, and their experimental observation paves the way for the experimental study of previously inaccessible quantum many-body phenomena.

Nature Physics AOP 3061 (2014)

Press release: (English, German)

Prof. Cheng Chin, winner of a Humboldt Research Award, will join our group for his research sabbatical in the beginning of August 2014. Prof. Chin studies quantum many-body phenomena based on ultracold atoms and molecules at the University of Chicago, including phenomena from different branches of physics such as nuclear, condensed matter, gravitational and astro-physics. During his stay in Munich he will work in close cooperation with our group at LMU and MPQ, as well as the group of Prof. Wilhelm Zwerger at TUM.

We implemented a ladder system with uniform magnetic field using ultracold atoms in optical lattices. By measuring the currents along the legs of the ladder we were able to observe a transition from a Meissner-like phase to a vortex phase.

 

Nature Physics 10, 588-593 (2014)

News and Views

Press Release MPQ (english, deutsch)